Quantum Computer as a Probabilistic Inference Engine
نویسنده
چکیده
We propose a new class of quantum computing algorithms which generalize many standard ones. The goal of our algorithms is to estimate probability distributions. Such estimates are useful in, for example, applications of Decision Theory and Artificial Intelligence, where inferences are made based on uncertain knowledge. The class of algorithms that we propose is based on a construction method that generalizes a Fredkin-Toffoli (F-T) construction method used in the field of classical reversible computing. F-T showed how, given any binary deterministic circuit, one can construct another binary deterministic circuit which does the same calculations in a reversible manner. We show how, given any classical stochastic network (classical Bayesian net), one can construct a quantum network (quantum Bayesian net). By running this quantum Bayesian net on a quantum computer, one can calculate any conditional probability that one would be interested in calculating for the original classical Bayesian net. Thus, we generalize the F-T construction method so that it can be applied to any classical stochastic circuit, not just binary deterministic ones. We also show that, in certain situations, our class of algorithms can be combined with Grover’s algorithm to great advantage.
منابع مشابه
Fuzzy Inference System Approach in Deterministic Seismic Hazard, Case Study: Qom Area, Iran
Seismic hazard assessment like many other issues in seismology is a complicated problem, which is due to a variety of parameters affecting the occurrence of an earthquake. Uncertainty, which is a result of vagueness and incompleteness of the data, should be considered in a rational way. Using fuzzy method makes it possible to allow for uncertainties to be considered. Fuzzy inference system,...
متن کاملFuzzy Inference System Approach in Deterministic Seismic Hazard, Case Study: Qom Area, Iran
Seismic hazard assessment like many other issues in seismology is a complicated problem, which is due to a variety of parameters affecting the occurrence of an earthquake. Uncertainty, which is a result of vagueness and incompleteness of the data, should be considered in a rational way. Using fuzzy method makes it possible to allow for uncertainties to be considered. Fuzzy inference system,...
متن کاملSlice Sampling for Probabilistic Programming
We introduce the first, general purpose, slice sampling inference engine for probabilistic programs. This engine is released as part of StocPy, a new Turing-Complete probabilistic programming language, available as a Python library. We present a transdimensional generalisation of slice sampling which is necessary for the inference engine to work on traces with different numbers of random variab...
متن کاملStructured Variational Distributions in VIBES
Variational methods are becoming increasingly popular for the approximate solution of complex probabilistic models in machine learning, computer vision, information retrieval and many other fields. Unfortunately, for every new application it is necessary first to derive the specific forms of the variational update equations for the particular probabilistic model being used, and then to implemen...
متن کاملPacific Association for Computational Linguistics EXPRESSING PROBABILISTIC CONTEXT-FREE GRAMMARS IN THE RELAXED UNIFICATION FORMALISM
The Theory of Relaxed Unification is a newly proposed theory that extends the power of classical unification. The theory relaxes the rigid constraints of requiring a perfect match between the terms being unified to allow multi-valued attributes. The Relaxed Unification Inference System is an implementation of an inference engine and an interpreter, which uses the relaxed unification mechanism i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008